	B \$2055	Pages: 1	
Reg N		PDCITY	
	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY B. TECH DEGREE EXAMINATION, D		
	Course Code: EC212	2010	
Cou	urse Name: LINEAR INTEGRATED CIRCUITS AND DIGIT	TAL ELECTRONICS	
Max.	(MC) k. Marks: 100	Duration: 3 Hours	
	PART A		
	Answer all questions, each carries 5 marks.		
1	List out the ideal and practical characteristics of Op-amp.		
2	Explain the working of an astable multivibrator with a neat di	xplain the working of an astable multivibrator with a neat diagram.	
3	Draw a circuit to overcome the disadvantages of a 3 bit b	binary weighted	
	DAC.		
4	Convert (3456) ₁₀ to octal and hexadecimal.		
5	Implement a half subtractor using logic gates.		
6	Distinguish PLA from PAL.		
7	Draw a diagram for parallel in parallel out shift register using D Flip Flop.		
8	Explain the working of Johnson counter.		
	PART B		
	Answer any 3 questions, each carries 10 mar	ks.	
9	Design an integrator of 1.5 KHz. Draw its frequency response	resign an integrator of 1.5 KHz. Draw its frequency response.	
10	List out the physical significance of an instrumentation amplifier with a neat		
	diagram.		
11	Explain how op-amp acts as an S/H circuit.		
12	Derive the transfer function of a first order low pass filter.		
13	Minimize the f (a,b,c,d) = \sum m (5,7) + d(8,9,13,15)		
	PART C		
	Answer any 2 questions, each carries 15 m	arks.	
14	Implement full adder using 3 x 8 decoder.		
15	Realize $f = \sum m(0,3,4)$, $f = \sum m(4,5,7) \& f = \sum m(4,6,7)$ using PLA and PAL.		
16	Design a 3 bit up and down synchronous counter.		
17	Obtain J-K Flip flop from S-R flip flop		
